
Journal of Engineering Physics and Thermophysics, 1Iot. 67, No. 3-4, 1994 

C O N C E N T R A T I O N A L  P O L A R I Z A T I O N  I N  

U L T R A F I L T R A T I O N  I N  A P L A N E  C H A N N E L  

V. I. Baikov, A. V. Bil'dyukevich, 
N. N. Luchko, and T. V. Sidorovich 

UDC 532.542 

We investigated steady-state concentrational polarization in laminar ultrafiltration in a plane channel in 

relation to the selective properties of the membrane. 

In the existing literature there is a lack of any clear theoretical ideas about laminar continuous-flow 

ultrafiltration in plane channels with imperfect selectivity of the membranes due to the complexity of the differential 

equations describing the process. There are individual works available [ 1 - 3 ]  in which, based on the integral 

method, attempts are made to analyze the process of ultrafiltration for the particular case of ideal selectivity of the 
membrane. The integral method used for describing ultrafiltration suffers from of important limitations and 

deficiencies consisting in the impossibility of using power-law or polynomial distributions of the concentration field 

to simultaneously describe accurately both the concentration profile and the diffusion flow, which is required by 

~rtue of the specific features of the boundary condition on the membrane. 

On the basis of a semiintegral method suggested in [4 ], which is devoid of the aforementioned drawback, 

in the present work we investigated the process of concentrational polarization in laminar ultrafiltration for the 

most general case of nonideal selectivity of the membrane. Here, we confine our considerations to the first stage 

of ultrafiltration, in which gel is not formed on the surface of the membrane. Then concentrational polarization in 

laminar continuous-flow ultrafiltration in a plane slit channel is described by the dimensionless equation of 
convective diffusion 

O0 O0 1 020 (1) 
t t - - + V - - = ~ -  2 

O~ Or/ Pe Or/ 

with the boundary conditions 

1 oO O0 
~,VO+ Pe Or/ - 0  ( r / =O) ;  0--~ = 0  (r /= 1); (2) 

o = 1 = 0 ) .  (3) 

In [5 ] it is shown that in the case of small transmembrane velocities V (which are precisely realized in 

ultrafiltration) and parabolic velocity distribution at the inlet to a plane channel it is possible to use, with a high 

degree of accuracy, the following expressions for the velocity components u and v: 

- 2 ' v = - V  1 - j r /  + 2 ' 

If we take into account the fact that in ultrafiltration Pe >> 1 (Pe  -107) ,  then the change in the 
concentration occurs entirely within the limits of a diffusional boundary layer lying in a narrow near-membrane 
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region. Then, to solve the equation of convective diffusion (1) we can restrict ourselves to the first terms in r/ in 
the velocity distributions (4): 

3 ( 1 -  V~)r/O-b-~=~- VO+p---~ 0--~- " (5) 

In the immediate vicinity of the membrane, where r / - ,  O, the concentration distribution, which in many respects 
determines the process of concentrational polarization, can be found from the equation 

~ ,~176 (6) 
V O + f f e  -b~ 

which follows directly from relation (5). After double integration of Eq. (6) and satisfaction of the first boundary 
condition of (2) we find 

O = O w [1 - 9" + 9' exp ( -  Pe Vr/)I, (7) 

where Ow(~) is the presently unknown concentration of the dissolved substance on the membrane surface. To find 
it, we shall avail ourselves of the integral equation of mass balance. For this, we integrate the equation of convective 
diffusion (5) across the boundary layer from 0 to 5 and take into account the first boundary condition of (2) together 

with the requirement that O = 1 at ~/ = 6. This will yield 

d ~ 
f 3 ( 1 -  V ~ ) r / ( O -  1) d ~ / + ( 1 - 9 ' ) V O  w= V. 
0 

(8) 

Starting with Eq. (7) and physical considerations based on the concept of the boundary layer, we will represent 

the distribution of the concentration O by the relation 

f 
0 = I Ow (~) [1 - 

1, 

9' + 9' exp ( -  Pe Vr/) ] ,  o_<~_<6(~),  

($) < r/_< 1, 

where the thickness of the diffusion boundary layer 6 (~) will be determined from the condition 

(9) 

O w [ 1 - 9 ' + 9 " e x p ( - P e l , ' 5 ) ] =  1. 

From this we obtain 

1 9"O w (10) 
6 = ~ l n  1 - ( 1 - 9 " ) O  w" 

We substitute Eqs. (9) and (10) into the relation (8) of mass balance. This will give an equation for computing 

concentration Ow(~) on the membrane surface: 

9"Ow 
d ( 1 -  V~) O w -  1 -  [ 1 - ( 1 - 9 " ) O  w ] l n l  (1 9")O w -  

- - 

1 ( 9"Ow 2 
- ) - [ 1 - ( 1 - 9 ' ) 0  w] [ l n 1 _ ( 1 _ 9 " ) 0  w 

In the general case, one cannot integrate Eq. (11). Let us consider 

} pe2 V2 (11) 
- 3 [1 - (1 - 9") O w l .  

some very important specific cases. 
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At small distances from the entrance to the channel, where V~ << 1 and Ow - t ,  the latter quantity can be 

represen ted  in the form O w =  1 + e ,  where  e <  1. T h e n  In T O w = I n T ( 1  + e ) ,  In [ 1 - ( 1 - T ) O w ] = l n  T 

[1 - e(1 - ~o)/T ], and,  expanding these logarithms in a series in powers of e, we obtain 

de3 T) dV~ - 2T3 pe2 V2 [ 1 - e (1T-- ] .  

From this, assuming that  e(l  - T ) / T  << 1, we find 

O w = 1 + T (2 Pe2VZl~)~ .  (12) 

D e t e r m i n i n g  the  t h i c k n e s s  of the  d i f f u s i o n a l  b o u n d a r y  l a y e r  in the  form of Eq. ( I0 ) ,  when  

1 - (1 - T)Ow -~ 0, we obtain 6 = (1/Pe)ln [TOw/(1 - T)Ow)] ~ 0% and one might think that Eq. (11) cannot 
be used for computing O w. However, the factor preceding the logarithm tends to zero much faster and the terms 

containing the logarithm must be omitted. 

Consequently, when the terms of Eq. (11) that contain the logarithm are small compared to O w - 1, we 

can use the following relation to compute the concentrational polarization: 

p v 2 d 
dV~ [(1 - V~)(O w - i ) 1 -  - e Z - -  3 [ 1 - ( 1 - T )  Ow]. 

Having differentiated this relation, we obtain an ordinary linear differential equation of first order, which, together 

with the boundary condition Ow = 1 at ~ = 0, gives the solution 

~-122 ] 
[ 3 ]  -1 (1 - PeV 

O w = 1 - T 1 3 
Pe 2 1/2 Pe z 1/2 T V~) (1-~) 

(13) 

Formula  (13) shows the  exis tence of two fundamenta l ly  important  l imiting cases in the case of laminar  

ultrafiltration. The value of 1 - T may be small or large compared to the combination 3/Pe2V z, which characterizes 

the relationship between the convective and diffusion mass transfer. 

We consider the case 

1 - T << 3/PeZ VZ. (14) 

By virtue of the fact that  in the case of ultrafiltration PeV = 10-10  3, condition (14) means almost ideal selectivity 

for the membrane (T - 1), and then Eq. (13) yields 

pe2 V2V~ (15) 
0 w= 1 + 3 ( 1 _  V~)' 

i.e., the concentration of the dissolved substance on the membrane increases continuously with increase in the 

distance from the entrance of the channel. 

Let us return to Eq. (11), assuming that T = 1. After integration we obtain 

Pe2 V2V~ (16) 1 (ln @w) 2 1 + 0 w - In 0 w - -~ = 
3 (1 - 

When Ow >> in ew, which was assumed in deriving formula (13), it can easily be seen that relation (16) goes over 
into relation (15). 

We now go to the s tudy of the opposite case, where 
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Fig. 1. Distribution of the concentration of an admixture on the wall along the 

channel length in relation to the selectivity of the membrane for Pe V = 40: 

1) ~o = 1; 2) 0.99; 3) 0.98; 4) 0.95. 

1 - ~ >> 3 / P e  2 V 2. (17) 

With this condition, as follows from Eq. (13), the concentration of the dissolved substance on the membrane builds 

up rapidly with an increase in the distance from the entrance of the channel: 

1 (1 (1 - 9 )  Pe2 2 O w = ~ -- ~O _ V~)(1 V / 3 )  (18) 

and attains the limiting value 

1 
O w -  1 - ~ o '  

which remains constant in the remaining part of the slit channel. 

We note that formulas (16) and (18) for the limiting cases considered agree very satisfactorily with the 

numerical solution of the initial system of equations (1)-(4). 

Relation (13) also agrees satisfactorily in the region of its applicability with numerical calculations, some 

results of which are presented in Fig. 1. 

In conclusion, we present formulas that establish the relationship between the true selectivity T and the 

observed selectivity Tob = 1 - Cf/Co. When O w = 1, Eq. (12) gives 

Tob = T [1 - (1 - T) (2 Pe 2 V2v~)l/3]. (19) 

The case described by formula (16) corresponds to the condition ~Oob = T = 1. Finally, from relation (18) we find 

the relation 

2 2 (2o) 
~Oob = ~o (1 -- V~) (1-T)  ve V / 3 ,  

which, for a moderate length of the channel, is transformed to the form 

9'oh = W exp [1 -- (1 -- T) pe2 VaV~/3] �9 (21) 
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From Eq. (21) it follows that with an increase in the transmembrane velocity the observed selectivity falls to zero 

following an exponential law. 

N O T A T I O N  

A A 

= x / h ,  r 1 = y / h ,  dimensionless longitudinal and transverse coordinates; u = u/uo ,  v = v /uo ,  dimensionless 

components of the velocity vector; h, half-height of the plane channel; u0, mean velocity at the channel entrance; 
Re = uoh/v, Reynolds number; v, kinematic viscosity coefficient; Pe = uoh/D, diffusional Peclet number; D, 

diffusion coefficient; O = C/Co,  dimensionless concentration of the dissolved substance at the channel inlet; Ow, 

dimensionless concentration of the dissolved substance on the membrane; V = V/uo,  transmembrane velocity; ~o 

= i, ideal selectivity of a membrane; Cf, concentration of the dissolved substance in the filtrate. 
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